第1講 Parametrized Curves, Regular Curves and Arc Length

- L1_A 1. Definition: Parametrized Curves
 - 2. Examples: Parametrized Differentiable Curves
- L1_B 1. Note: Difference Between Curve and Trace
 - 2. Definition: Regular Curves
 - 3. Example: Helix
- L1_C 1. Example: Helix (cont.)
 - 2. Definition: The Arc Length of a Regular Curve

第2講 The Local Theory of Curves Parametrized by Arc Length

- L2_A 1. Note: Properties of Arc Length
 - 2. Recall: Inner Product and Wedge Product
 - 3. Definition: Parametrized by Arc Length
- **L2_B** 1. Example: Logarithmic Spiral
 - 2. Derivation: Curvature of a Curve Parametrized by Arc Length
- L2_C 1. Definition: Curvature
 - 2. Examples: Straight Line and Circle
 - 3. Definition: Frenet Frame

第3講 The Local Theory of Curves Parametrized by Arc Length (cont.)

- L3_A 1. Definition: Torsion of a Curve Parametrized by Arc Length
 - 2. Derivation: Frenet Formula
- L3_B 1. Definition: Normal Plane and Rectifying Plane
 - 2. Example: Helix
- L3_C 1. Theorem: A Curve with Positive Curvature Is a Plane Curve if and only if Its Torsion Is Identically Zero

第4講 The Local Theory of Curves Parametrized by Arc Length (cont.)

- L4_A 1. Derivation: Curvature and Torsion of a Curve NOT Parametrized by Arc Length
- L4_B 1. Derivation: Curvature and Torsion of a Curve NOT Parametrized by Arc Length (cont.)
 - 2. Example: Curve in R^2
- L4_C 1. Definition: Rigid Motion
 - 2. Theorem: Fundamental Theorem of the Local Theory of Curves

第5講 The Local Theory of Curves Parametrized by Arc Length (cont.)

- **L5_A** 1. Proof: Fundamental Theorem of the Local Theory of Curves
- **L5_B** 1. Proof: Fundamental Theorem of the Local Theory of Curves (cont.)
- **L5_C** 1. Proof: Fundamental Theorem of the Local Theory of Curves (cont.)

第6講 Isoperimetric Inequality

- L6_A 1. Definition: Closed Curves, Simple Closed Curves and Positive Oriented Simple Closed Curves
 - 2. Motivation: Dido's Problem
- L6_B 1. Theorem: Isoperimetric Inequality
 - 2. Recall: Green's Theorem
- **L6_C** 1. Proof: Isoperimetric Inequality

第7講 Regular Surface

- L7_A 1. Review: Isoperimetric Inequality
 - 2. Definition: Regular Surface
- **L7_B** 1. Derivation: Operation of $d\vec{X}_q$
- **L7_C** 1. Note: Regularity Condition of \vec{X}
 - 2. Example: Unit Sphere (Method I)

第8講 Regular Surface (cont.)

- L8_A 1. Example: Unit Sphere (Method II)
- **L8_B** 1. Proposition: The Graph of a Differentiable Function Is a Regular Surface
 - 2. Definition: Critical Points and Critical Values
- **L8_C** 1. Definition: Regular Values
 - 2. Proposition: The Inverse Image of a Regular Value Is a Regular Surface
 - 3. Example: Unit Sphere (Method III)
 - 4. Recall: Inverse Function Theorem

第9講 Regular Surface (cont.)

- L9_A 1. Proof: The Inverse Image of a Regular Value Is a Regular Surface
- L9_B 1. Derivation: Quadric Surfaces
- **L9_C** 1. Proposition: A Regular Surface Is Locally the Graph of a Differentiable Function

第10講 Change of Parameters

- **L10_A** 1. Example: Hyperboloid
 - 2. Definition: Connected Surfaces
- L10_B 1. Proposition: Change of Parameters
- L10_C 1. Proof: Change of Parameters
 - 2. Definition: Differentiable Functions on Surfaces

第11講 Differentiable Functions on Surfaces

- L11_A 1. Review: Differentiable Functions on Surfaces
 - 2. Examples: Height Function and Distance Square Function
- L11_B 1. Corollary: Differentiable Functions Between Surfaces
 - 2. Definition: Diffeomorphic and Diffeomorphism
 - 3. Examples: Symmetric Map and Rotation Map
 - 4. Example: A Sphere Is Diffeomorphic to an Ellipsoid
- L11_C 1. Derivation: Surface of Revolution

第12講 Parametrized Surfaces and Tangent Vectors

- L12_A 1. Definition: Parametrized Surfaces and Regular Parametrized Surfaces 2. Example: The Tangent Surface
- L12_B 1. Proposition: A Regular Parametrized Surface Is Locally a Regular Surface 2. Definition: Tangent Vectors
- **L12_C** 1. Proposition: Relation Between $T_p(S)$ and $d\vec{X}_q(R^2)$ 2. Proposition: The Tangent Plane to $f^{-1}(a)$ Is the Kernel of df_p

第13講 The Tangent Plane and the Differential of a Map

- L13_A 1. Review: The Tangent Plane
 - 2. Proof: The Tangent Plane to $f^{-1}(a)$ Is the Kernel of df_p
 - 3. Example: Sphere
- **L13_B** 1. Example: Sphere (cont.)
 - 2. Proposition: Differential of a Map
- L13_C 1. Example: Rotation Map on Unit Sphere
 - 2. Definition: Local Diffeomorphism
 - 3. Proposition: The Differential Is a Local Isomorphism Implies a Local Diffeomorphism

第14講 The Tangent Plane and the Differential of a Map (cont.)

- L14_A 1. Definition: Critical Points
 - 2. Example: The Tangent Plane at a Critical Point
 - 3. Derivation: Differential of Composite Maps
- **L14_B** 1. Derivation: Differential of Composite Maps (cont.)
 - 2. Definition: Orthogonality of Two Surfaces

第15講 The First Fundamental Form and the Area of a Surface

- **L15_A** 1. Definition: The First Fundamental Form
 - 2. Example: Unit Sphere
- L15_B 1. Example: Unit Sphere (cont.)
 - 2. Application: Rhumb Line
- **L15_C** 1. Application: Rhumb Line (cont.)
 - 2. Definition: The Area of a Surface

第16講 The First Fundamental Form and the Area of a Surface (cont.)

- **L16_A** 1. Definition: The Area of a Surface (cont.)
 - 2. Example: Unit Sphere
- L16_B 1. Definition: Locally Isometric
 - 2. Example: A Plane Is Locally Isometric to a Cylinder

第17講 Orientation of a Surface

- **L17_A** 1. Definition: Orientable Surface
 - 2. Example: Surface Covered by One Parametrization
- **L17_B** 1. Example: Surface Covered by Two Parametrizations
 - 2. Proposition: A Surface Is Orientable if and only if It Has a Differentiable Unit Normal Vector Field
- L17_C 1. Proposition: A Surface Is Orientable if and only if It Has a Differentiable Unit Normal Vector Field (cont.)
 - 2. Example: Mobius Band

第18講 The Gauss Map and Its Fundamental Properties

- **L18_A** 1. Proposition: Regular Surface Given by the Inverse Image of a Regular Value Is Orientable
 - 2. Definition: Gauss Map
- **L18_B** 1. Definition: Gauss Map (cont.)
 - 2. Examples: Plane and Hyperbolic Paraboloid
- **L18_C** 1. Examples: Hyperbolic Paraboloid (cont.) and Unit Sphere

第19講 The Gauss Map and Its Fundamental Properties (cont.)

- **L19_A** 1. Motivation: The Curvature of a Surface Is Characterized by the Differential of Gauss Map
 - 2. Example: Cylinder
- **L19_B** 1. Definition: Self-Adjoint Linear Map
 - 2. Proposition: The Differential of Gauss Map Is a Self-Adjoint Linear Map
 - 3. Definition: The Second Fundamental Form
- **L19_C** 1. Definition: Normal Curvature
 - 2. Derivation: The Geometric Meaning of the Second Fundamental Form

第 20 講 The Gauss Map and Its Fundamental Properties (cont.)

- **L20_A** 1. Review: The Geometric Meaning of the Second Fundamental Form
 - 2. Proposition: Meusnier
 - 3. Example: Unit Sphere
- L20_B 1. Definition: Normal Section
 - 2. Derivation: Define the Normal Curvature by Normal Section
- **L20_C** 1. Definition: Principal Curvatures and Principal Directions
 - 2. Definition: Line of Curvature
 - 3. Proposition: Olinde Rodrigues
 - 4. Derivation: Euler Formula

第 21 講 The Gauss Map and Its Fundamental Properties (cont.)

- L21_A 1. Definition: Gauss Curvature and Mean Curvature
 - 2. Definition: Elliptic, Hyperbolic, Planar and Parabolic Point
- L21_B 1. Definition: Umbilical Point
 - 2. Example: Study the Gauss Map on $\{2z = x^2 + y^2\}$ at (0,0,0)
- **L21_C** 1. Proposition: A Connected Surface with Every Point Being Umbilical Point Is a Piece of Plane or Sphere

第 22 講 The Gauss Map and Its Fundamental Properties (cont.)

- **L22_A** 1. Proposition: A Connected Surface with Every Point Being Umbilical Point Is a Piece of Plane or Sphere (cont.)
- **L22_B** 1. Proposition: A Connected Surface with Every Point Being Umbilical Point Is a Piece of Plane or Sphere (cont.)
 - 2. Definition: Asymptotic Direction and Asymptotic Curve
 - 3. Example: Straight Line
- L22_C 1. Example: Straight Line (cont.) and Curve with Positive Curvature
 - 2. Observation: There Is NO Asymptotic Direction at an Elliptic Point
 - 3. Definition: Dupin Indicatrix

第 23 講 The Gauss Map in Local Coordinates

- **L23_A** 1. Derivation: Equations of Weingarten
- **L23_B** 1. Derivation: Equations of Weingarten (cont.)
 - 2. Gauss Curvature in terms of the First and Second Fundamental Form
- **L23_C** 1. Mean Curvature in terms of the First and Second Fundamental Form
 - 2. Principal Curvatures in terms of the First and Second Fundamental Form
 - 3. Proposition: Smoothness of Gauss Curvature, Mean Curvature and Principal Curvatures

第 24 講 The Gauss Map in Local Coordinates (cont.)

- **L24_A** 1. Review: The Formula of Gauss Curvature, Mean Curvature and Principal Curvatures
 - 2. Example: Torus
- L24_B 1. Example: Torus (cont.)
- **L24_C** 1. Example: Helicoid

第 25 講 The Gauss Map in Local Coordinates (cont.)

L25_A 1. Proposition: The Position of a Surface in the Neighborhood of an Elliptic Point or a Hyperbolic Point with respect to the Tangent Plane

第 26 講

- **L26_A** 1. Review: Dupin Indicatrix and Its Graph
 - 2. Example: Monkey Saddle
- **L26_B** 1. Examples: $z = y^3$ Rotated About z = 1 and Cylinder 2. Derivation: Gauss Curvature of a Surface of Revolution
- **L26_C** 1. Derivation: Gauss Curvature of a Surface of Revolution (cont.)

第 27 講 The Gauss Map in Local Coordinates (cont.)

- **L27_A** 1. Review: Gauss Curvature of a Surface of Revolution
 - 2. Derivation: Differential Equation of the Asymptotic Curves
- **L27_B** 1. Proposition: The Coordinate Curves Are Asymptotic Curves if and only if e = g = 0
 - 2. Example: Asymptotic Curves
- **L27_C** 1. Example: Asymptotic Curves (cont.)
 - 2. Proposition: The Coordinate Curves Are Asymptotic Curves if and only if f = F = 0

第 28 講 The Gauss Map in Local Coordinates (cont.)

- **L28_A** 1. Proposition: The Coordinate Curves Are Asymptotic Curves if and only if f = F = 0 (cont.)
- **L28_B** 1. Preview: Local Version of Gauss Bonnet Theorem